Well, once you try to get into details on how things actually work in SCHNAarP, or any software tools in that matter, you will surely have lots of questions. Getting the software compiled and run is just the beginning.
Overall, SCHNAarP was produced 10+ year ago, and it is now superseded by 3DNA (v2.0). That does not mean the underlying algorithms are out of date. Just on the contrary, the mathematics is valid and solid, and it forms one of the foundations of 3DNA. Yet by design, the reference frames in CEHS and SCHNAaP only apply to double helical DNA/RNA structures (with Waton-Crick bps). As a special note, stretch for a Watson-Crick base-pair is ~5.4 A instead of 0 A, as would be expected, and from other analysis programs.
Now for your specific questions:
There is no special documentation to the file format on Sequence-GLH parameter file. It would be self-explanatory by following an example. For your case, first enter #2 for "Use GLOBAL helical parameters." Then I enter #1 for "Uniform regular helix" and you will get an output file "GLH_seq.dat". Examine it and post back here what you find. And have a look of 1bna.glh following schnaap.
Building RNA structure from a set of SCHNAaP global parameters would be practically meaningless (see above). With the source code in hand and once you get to the bottom of it, you could borrow the idea to apply to your specific applications. This does take time and efforts -- it is not just about the C code, but more about the underlying mathematics and the nucleic acid structure problems being addressed.
HTH,
Xiang-Jun