My work focuses on molecular dynamics simulations of Z-DNA and its interactions with binding proteins. I'm particularly interested in understanding the mechanisms that stabilize Z-DNA, which is inherently less stable than B-DNA.
To explore this, I used the crystal structure of the ADAR1 protein bound to a short Z-DNA segment. Since the original segment was quite short, I wanted to extend the Z-DNA backbone. With your help, I was able to successfully simulate this extended structure. However, I encountered challenges in reproducing the specific protein–Z-DNA interactions observed in the crystal structure during my simulations. I believe this is due to multiple non-specific interactions forming between the DNA and the protein, which may mask or override the specific contacts I'm trying to study. It is not a Z-DNA remodeling problem but I am working on understanding Z-DNA stability.
In addition to Z-DNA, I also work on other non-canonical DNA structures, particularly G-quadruplexes (G4s). I’m developing a method to construct ideal G-quadruplex models from sequence data by first arranging guanine bases into tetrads, then building in the backbone and loop regions. As @Di_Liu suggested, I believe a similar model-building strategy could be applied to Z-DNA, to help generate consistent and realistic structures. What do you think about this approach or direction?
Thank you!