41
Netiquette · Download · News · Gallery · G-quadruplexes · DSSR-Jmol · DSSR-PyMOL · Video Overview · DSSR v2.5.4 (DSSR Manual) · Homepage
Apologies for it took a while to reply. Thank you for your help with the structure! I used phenix to minimise like you suggested and I can use it for my analysis now.
I would also look forward to Z-DNA backbones being included in DSSR modeling functionalities.
I understand that x3dna-dssr can handle pseudouridine (PDB Chem ID: PSU) correctly. I'm inquiring about its support for N1-methyl-pseudouridine (PDB Chem ID: B8H). Specifically, does x3dna-dssr recognize B8H based on its PDB chemical ID, or does it rely on atomic connectivity?
FYI, I've tested x3dna-dssr with PDB entries 8PFK and 8PFQ, both containing B8H, and the analysis proceeded without errors, with the results looking reasonable. However, given the unique C5-C1′ glycosidic bond for B8H, I want to confirm that x3dna-dssr interprets this modification accurately.
Note that pseudouridine, the most prevalently modified nt in RNA, is denoted P† in DSSR and the small case p is reserved for potential modified pseudouridines. ... footnote: †Not to be confused with the phosphorus atom in the backbone phosphate group. The distinction should be clear in context.
Further, is there a comprehensive list of modified nucleotides currently supported by x3dna-dssr? I came across these two pages (https://x3dna.org/highlights/automatic-identification-of-nucleotides ; https://x3dna.org/highlights/modified-nucleotides-in-the-pdb ), but could not find the exact answer.
Over the years, I've refined the heuristics of the mapping process. In the early days with 3DNA, I kept an ever increasing list of 'baselist.dat' with hundreds of entries like: MIA a that maps MIA as a modified A, denoted as lowercase 'a'. In the current DSSR, I keep only the standard ones, with 48 entries total (see attached DSSR-baselist.txt). If a residue is not a standard one, the following function is called to do the mapping (DSSR performs filtering to decide if it is a nucleotide, and if so R or Y). DSSR also has a command-line option --nt-mapping as documented in the screenshot.
Does the attached PDB file (with base schematic image) fulfill your needs?
Funded by the NIH R24GM153869 grant on X3DNA-DSSR, an NIGMS National Resource for Structural Bioinformatics of Nucleic Acids
Created and maintained by Dr. Xiang-Jun Lu, Department of Biological Sciences, Columbia University