Hi shr,
Following the discussion in the previous thread on "
Rebuilding circular Z-DNA", as quoted below:
In addition to Z-DNA, I also work on other non-canonical DNA structures, particularly G-quadruplexes (G4s). I’m developing a method to construct ideal G-quadruplex models from sequence data by first arranging guanine bases into tetrads, then building in the backbone and loop regions.
I am glad to hear about your work on G-quadruplexes. Actually, I have recently revised the G4 module in DSSR, fixed existing bugs, and added new features. The
g4.x3dna.org website has undergone a complete overhaul, enabling users to upload their own structures for dynamic G4 analysis. Additionally, the DSSR-G4DB database is being actively updated on a weekly basis as new PDB entries are added. See the four blog posts comparing DSSR with other related analysis tools on G-quadruplexes:
ASC-G4,
Webba da Silva nomenclature,
ElTetrado and related tools, and
CIIS-GQ.
Moveover, I am also interested in modeling G-quadruplexes, taking G-tetrad as the building block. There are quite a few other threads in DSSR I'd like to pursue further in the future. I'd certainly like to hear more about your approach on modeling G-quadruplex.
I dug into the code of DSSR for modeling G-quadruplexes, and found the following experimental (and undocumented) features. DSSR can model G-quadruplexes using G-tetrad as the building block, and allows users to specify the number of G-tetrads and twist angle (among other things). See below for two examples: one with 3 layers of G-tetrads and 0 degrees of twist angle, and other with 6 layers and twist=36, respectively.
Best regards,
Xiang-Jun