User’s guide of X3DNA Parser

Yurong Xin
January 17, 2008

1 Introduction

The X3DNAParser is created to process data generated by 3DNA soft-
ware package. The UML diagram in Figure 1 illustrates the classes and
their associations in X3DNAParser. Codes for processing PDB files (en-
closed in dashed box in Figure 1) use the Bio.PDB module in Biopython
(http://www.biopython.org/) with some modifications. An RNA structure
is processed hierarchically by a SMCRA scheme (Structure, Model, Chain,
Residue, and Atom) to construct a structure object. The object is then
passed to the X3DNA parser which interprets the output files of 3DNA. The
X3DNA parser contains four child classes which serve different purposes. The
Secondary class is used to create helix objects which are composed of base
pairs. The Tertiary class constructs base-pair objects that are not embedded
in helical regions. Objects of base-pair steps are generated by the Step Wrap-
per class, and higher-order base interactions are parsed by the Multi Wrapper
class.

“90URJLISYUI 9J0USP SO[SURLI} [IIM SOUI]
PUR ‘SUOIJRIDOSSE 9)OUSD SIOQUINUT [IIM SOUI] P[Oq ‘UOI1e3oI33e 9j0ousp spuowrerp [Yjm sour] pjog -asexded g org
o1} UIOI] POALIDOP dIe XO(POYSEpP oY} Ul poaso[ouo sasse[) ‘odeyord IosIeJYNEX oY) Jo weiderp TN :] 2INS1]

Iredeseg !

: woy |

1Bldn daiseseg N Jredaseq H Jredaseg

% W onpiser ||

XII8BHS xieH [] |

% m ureyD [

Jaddespiiniy laddeipdais Krews) [] Arepuoosg || AV

VNAeX

[SPOIN

ainlonis

Amuz

One useful feature of this parser is to show structural context of residues
and base pairs. We use a set of terms to describe structural context in terms
of helical and single-stranded secondary elements (Figure 2).

H Continuous helical region in the given helix.

H°¢ End of the given helix and in a continuous helical region.
Hf End of the given helix and in a inserted base pair.

H{ Break of a continuous helical region in the given helix.
H; Inserted base pair in the given helix.

H, Lone helix (with only one base pair).

S, Internal loop.

S;, Terminal loop.

S, Single-stranded segment that links two (quasi-continuous) helices.

S Single-stranded segment at the end of the molecule.

2 Input files

The X3DNAParser needs three files: PDB, “bp”, “out”. The PDB file is a
format used in Protein Data Bank and Nucleic Acid Database. The “bp” file
is generated using following command:

find_pair -p a.pdb a.bp
The “out” file is generated as follows:
find_pair a.pdb stdout | analyze

It will automatically generate a file named “a.out” in most cases. This file
is optional because some structures will not have it.

a. - = He b — He
] . Hg
m---m H ----—- m H;
CT] @333 H
[771 g "

T 1T T T T 1T T T T

Sh H

Figure 2: Schematic illustration of the structural context of base pairs. Helices
are represented by continuous or quasi-continuous paired lines. Ticks connected by
dashed lines denote paired bases in helices. Small black boxes illustrate nucleotides
involved in different helical contexts. Single-stranded segments are denoted by bold
lines.

3 Examples

The X3DNAParser provides information of 3D structure (based on PDB
coordinates) and interaction (based on 3DNA output files). Users can extract
information from different levels, such as residue level and base-pair level. A
few examples will demonstrate usage of the parser.

3.1 Get all base pairs for a given structure

Base pairs are classified into two groups: those embedded in helices and those
outside helices. The example below shows how to get base-pair list in helical
regions. If users want to get a list of non-canonical base pairs not embedded
in helices, they can use the second example.

Example 1.

from PDBParser import PDBParser
from X3DNAParser import X3DNAParser
pdb_parser = PDBParser()
pdb_parser.parse_pdb(’2gdi’, ’2gdi.pdb’)
structure = pdb_parser.get_structure()
x3dna_parser = X3DNAParser(’2gdi’, structure)
x3dna_parser.parse_x3dna(’2gdi.bp’, ’2gdi.out’)
x3dna = x3dna_parser.get_x3dna()
secondary = x3dna[’secondary’]
for element in secondary.get_iterator():
if element.get_sec_class() == ’helix’:
print "helix #}d: Jd base pairs" % (element.get_id(), \
element.get_number())
for basepair in element.get_child_list():
resl, res2 = basepair.get_respair()

tagl = resl.get_resname() + ":" + str(resl.get_resseq()) + \
":" + resl.get_full_id() [2]
tag2 = res2.get_resname() + ":" + str(res2.get_resseq()) + \

"' + res2.get_full_id() [2]
contextl = resl.get_continuity()
context2 = res2.get_continuity()
print "\t%sl|¥%s\thsl¥%s" % (tagl, contextl, tag2, context2)

Example 2.

from PDBParser import PDBParser

from X3DNAParser import X3DNAParser

pdb_parser = PDBParser()

pdb_parser.parse_pdb(’2gdi’, ’2gdi.pdb’)

structure = pdb_parser.get_structure()

x3dna_parser = X3DNAParser(’2gdi’, structure)

x3dna_parser.parse_x3dna(’2gdi.bp’, ’2gdi.out’)

x3dna = x3dna_parser.get_x3dna()

tertiary = x3dnal[’tertiary’]

for basepair in tertiary.get_iterator():
resl, res2 = basepair.get_respair()

tagl = resl.get_resname() + ":" + str(resl.get_resseq()) + \
":" + resl.get_full_id() [2]
tag2 = res2.get_resname() + ":" + str(res2.get_resseq()) + \

"+ res2.get_full_id() [2]
contextl = resl.get_continuity()
context2 = res2.get_continuity()
secl = resl.get_sec_id()
sec2 = res2.get_sec_id()
print "\t%sl|%s|#%d\ths|%s|#%d" % (tagl, contextl, secl, \
tag2, context2, sec2)

