3DNA Forum

Questions and answers => RNA structures (DSSR) => DSSR-NAR paper => Topic started by: xiangjun on July 08, 2015, 08:33:05 pm

Netiquette · Download · News · Gallery · Homepage · DSSR Manual · G-quadruplexes · DSSR-Jmol · DSSR-PyMOL · DSSR Licensing · Video Overview· RNA Covers

Title: Figure 2 -- analysis of the yeast phenylalanine tRNA (1ehz)
Post by: xiangjun on July 08, 2015, 08:33:05 pm
(http://x3dna.bio.columbia.edu/dssr-nar/fig2-tRNA-1ehz/fig2-1ehz.png)

Quote
Figure 2: DSSR captures well-known features and provides a new perspective on the classic yeast tRNAPhe structure (PDB id: 1ehz (46)). (A) The software automatically detects the four stems and the two helices that form the L-shaped molecule, depicted here in cartoon-block representation (center). Whereas the helices may include all types of base pairs and backbone breaks, the stems comprise only canonical pairs with continuous backbones. Note the coaxial stacking of the D and anti-codon stems and the noncanonical features of the composite helix (represented by a gray line, left). The red ‘circle’, overlaid on the central image and detailed to the right, reveals the 3D pathway along the [2,1,5,0] four-way junction loop. (B) The dot-bracket notation derived by DSSR serves as input for the depicted linear (arc) representation of secondary structure. The bases comprising the four-way junction loop (red) run in sequential order from U7 (*) following the arrows to the right and returning along the outer A66→U7 arc. The pseudoknotted G19–C56 pair (with matched []) is noted by the dashed arc. (C) Both the four-way junction (red) and the three hairpin loops follow ‘circular’ routes within the traditional cloverleaf representation of tRNA. Here the 14 modified nucleotides are represented by three-letter codes. The 3D images were created using PyMOL (A-red; C-yellow; G-green; T-blue; U-cyan; pseudouridine P-gray), the 2D diagrams using VARNA, and the annotations using Inkscape.

Here is the tarball (fig2-tRNA-1ehz.tar.gz (http://x3dna.bio.columbia.edu/dssr-nar/fig2-tRNA-1ehz.tar.gz)) containing all the scripts and data files.


It takes many steps and great attention to details to generate the above figure, even though the basic idea is quite simple. The following script (in file 'tasks') takes advantage of 3DNA, PyMOL, VARNA, ImageMagick, Inkscape and some previously undocumented DSSR options. It is not the raw script originally used to create Figure 2 of the DSSR-NAR paper. For easy followup, the script has been made more self-contained, at the expense of apparent repetition of commands and PyMOL settings in various .pml files.

For understanding of the script, detailed notes are provided below for each major step. The 3D images in .png format and secondary structure diagrams in .svg format are combined and annotated using Inkscape. Great care has been taken to ensure the accuracy of details and quality of the figure. By and large, Figures 3-6 and Supplementary Figures 1-9 follow the same convention.

Code: Bash
  1. # Step #1 -- reorient tRNA into the classic "L" shape
  2. x3dna-dssr -i=1ehz.pdb -o=1ehz.out --more --prefix=1ehz
  3. pdb_frag A 1:76 1ehz.pdb 1ehz-nts.pdb
  4. # extract the two helical axes from 1ehz.out to file: 1ehz.rot1
  5. # then reorient the structure into the "L" shape: 1ehz.rot2
  6. rotate_mol -t=1ehz.rot1 1ehz-nts.pdb 1ehz-rot1.pdb
  7. rotate_mol -r=1ehz.rot2 1ehz-rot1.pdb 1ehz-ok.pdb
  8.  
  9. # Step #2 -- get the cartoon-block representation with the two
  10. #            ls-fitted helical axes.
  11. x3dna-dssr -i=1ehz-ok.pdb --helical-axis -o=temp
  12. \mv dssr-helicalAxes.pdb 1ehz-ok-helices.pdb
  13. x3dna-dssr -i=1ehz-ok.pdb --block-file -o=1ehz-ok-blocks.r3d
  14.  
  15. # Step #3 -- simplified representation of the [2,1,5,0] 4-way junction in 3D
  16. #         -- note the --raw-xyz option: it keeps the original coordinates
  17. x3dna-dssr -i=1ehz-ok.pdb --raw-xyz --simple-junction -o=temp
  18. \mv dssr-simplifiedJcts.pdb 1ehz-ok-jct.pdb
  19. #  see file: 1ehz-ok-jct.pml
  20. pymol -qkc 1ehz-ok-jct.pml
  21. convert -trim +repage -border 10 -bordercolor white 1ehz-ok-jct-pymol.png 1ehz-ok-jct.png
  22. # see file: 1ehz-ok-full.pml (cartoon-block with the schematic junction overlaid)
  23. pymol -qkc 1ehz-ok-full.pml
  24. convert -trim +repage -border 10 -bordercolor white 1ehz-ok-full-pymol.png 1ehz-ok-full.png
  25.  
  26. # Step #4 -- illustration of 'vertical' helix of the "L", composed of
  27. #            anti-codon and D stems, coaxially stacked around M2G26-A44
  28. x3dna-dssr -i=1ehz-ok.pdb --raw-xyz -o=temp
  29. ex_str -2 dssr-helices.pdb 1ehz-ok-h2.pdb
  30. x3dna-dssr -i=1ehz-ok-h2.pdb --helical-axis -o=temp
  31. \mv dssr-helicalAxes.pdb 1ehz-ok-h2-helices.pdb
  32. x3dna-dssr -i=1ehz-ok-h2.pdb --block-file -o=1ehz-ok-h2-blocks.r3d
  33. #  see file: 1ehz-ok-h2.pml
  34. pymol -qkc 1ehz-ok-h2.pml
  35. convert -trim +repage -border 10 -bordercolor white 1ehz-ok-h2-pymol.png 1ehz-ok-h2.png

Step #1: reorient the raw tRNA PDB structure (1ehz (http://www.rcsb.org/pdb/explore/explore.do?structureId=1ehz)) into the classic "L" shape. The helix containing the acceptor/T stems is put "horizontal", and the one with D/anti-codon stems "vertical".


Step #2: -- get the cartoon-block representation with the two least-squares-fitted helical axes.


Step #3 -- simplified representation of the [2,1,5,0] 4-way junction in 3D


Step #4 -- illustration of 'vertical' helix of the L-shaped tRNA

Created and maintained by Dr. Xiang-Jun Lu [律祥俊] (xiangjun@x3dna.org)
The Bussemaker Laboratory at the Department of Biological Sciences, Columbia University.